
1

Formatting:

%f = fixed-point, or decimal

%e = scientific notation

%g = fixed-point or exponential with no trailing zeros

%i = integer

%c = single character

%s = string of characters

The general form of the fprintf() function is the following:

fprintf(string with format commands, variable and array names)

Example:

score = [33 44 55];

fprintf('Score 1 is %f. \n' , score(1))

fprintf('Score 2 is %f and score 3 is %f. \n' , score(2) , score(3))

Output:

Score 1 is 33.000000.

Score 2 is 44.000000 and score 3 is 55.000000.

Recycling format commands:

If you do not provide enough format commands, old format commands will be recycled.

Example:

score = [33 44 55];

for i=1:numel(score)

 fprintf('Score #%i is %e. \n' , i, score(i))

end

Output:

Score #1 is 3.300000e+001.

Score #2 is 4.400000e+001.

Score #3 is 5.500000e+001.

2

Controlling precision of data:

The general form of this formatting option is the following:

%X.Yf

where X is the total number of spaces for displaying the variable’s value and Y is the amount of

numbers to display right of the decimal. Keep in mind that the decimal point takes up one space.

%X.Ye = scientific notation format

%Xi = integer

%Xc = single character

%Xs = string of characters

Example:

score = [33 44 55];

fprintf('Score 1 is %7.3f. \n' , score(1))

fprintf('Score 2 is %5.1f and score 3 is %12.3f. \n' , score(2) , score(3))

Output:

Score 1 is 33.000.

Score 2 is 44.0 and score 3 is 55.000.

Multidimensional arrays:

If you try to print multiple arrays you may run into trouble. Using the function y = x
2
 I would

like to print off all x-values in the first column, all the corresponding y-values in the second

column.

M-file:

x = (0:1:5);

y = x.^2;

fprintf('%4.1f %6.1f \n' , x , y)

Output:

 0.0 1.0

 2.0 3.0

 4.0 5.0

 0.0 1.0

 4.0 9.0

16.0 25.0

3

Whoops. This didn’t work. All the x values printed first, then the y values. Instead, we combine

x and y into a single array and then print that. Remember, multi-dimensional arrays will be

printed column by column.

M-file:

x = (0:1:5);

y = x.^2;

tablexy = [x;y];

fprintf('%4.1f %6.1f \n' , tablexy)

Output:

 0.0 0.0

 1.0 1.0

 2.0 4.0

 3.0 9.0

 4.0 16.0

 5.0 25.0

Writing to a file:

x = (0:1:5);

y = x.^2;

tablexy = [x;y];

file1 = fopen('funfile.txt', 'w')

fprintf(file1, '%4.1f %6.1f \n' , tablexy)

fclose(file1)

Inside ‘funfile.txt’:

 0.0 0.0

 1.0 1.0

 2.0 4.0

 3.0 9.0

 4.0 16.0

 5.0 25.0

4

Reading from a file:

Using the code from the previous example, let’s open up funfile.txt, read in the data, and display

the data on the screen.

% From the previous example:

x = (0:1:5);

y = x.^2;

tablexy = [x;y];

file1 = fopen('funfile.txt', 'w');

fprintf(file1, '%4.1f %6.1f \n' , tablexy)

fclose(file1);

% now we read in the data

file2 = fopen('funfile.txt');

% This will read the x and y values until the file is over

% (2 columns and an infinite number of rows... unless end of file is reached)

% [2,6] would do the same thing as [2,inf] in this case.

A = fscanf(file2, '%f' , [2, inf]);

fclose(file2);

% Notice that the data is transposed when stored in A.

% fscanf() reads data in COLUMN ORDER, similar to how fprintf() writes in column order.

disp(A)

% However, this format is perfect for fprintf since it prints column by column

fprintf('%7.2f %7.2f \n', A)

