
Data Storage:

Computers are made of many small parts, including transistors, capacitors, resistors, magnetic

materials, etc. Somehow they have to store information in these materials both temporarily

(RAM, or “memory”) and permanently (hard drives).

In previous lectures, we have said that variables and arrays store values. The values actually are

stored in memory. But what does that mean physically? How can we store information in

physical materials?

Memory consists of (among other things) many, many capacitors. Capacitors are able store

charge and “slowly” release charge over time. We can think of the capacitors being in one of two

states, charged or discharged. Alternatively, we can think of each capacitor as being in a state 1

or a state 0.

Hard drives contain a magnetic material that can stay permanently magnetized. Each small

section of the material will be either magnetized or unmagnetized. It is convenient to think of

these small sections as being in a state 1 or state 0.

By combining many of these “1s” and “0s” we can store a lot of information. The 1s and 0s are

called binary digits, or bits. A group of 8 bits makes a byte.

Since there is a finite amount of material in a computer, there is a finite amount of data that can

be stored in a computer both in the short-term and long-term.

Each time you create a variable in memory, a certain amount of memory is allocated for that

variable based on its data type (or class).

Data Types (Classes):

There are many different data types. Thus far, we have focused on three major data types:

floating-point double precision number, character, and logical.

(1A) Floating point numbers – Double Precision

By default, Matlab/Octave assumes all numerical data are double precision floating-point

numbers. Matlab/Octave allocates 8 bytes of memory for each variable and array element

created.

Using the realmax and realmin commands, we can see the maximum and minimum value for

double precision floating point numbers.

The maximum value that can be stored is ~1.7977e+308

The minimum value that can be stored is ~ 2.2251e-308

We run into problems when we try to store numbers that are too big or too small.

In m-file:

a = 1e400

b = 1e-400

a*b

(1e200/1e-200) * 1e-200

Output:

a = Inf

b = 0

ans = NaN

ans = Inf

A double precision floating-point variable can store ~16 digits of precision.

In m-file:

format long

a = 1.1;

b = 1.100000000000001;

c = b-a; d = c*1e15;

fprintf('b = %28.25f\n',b)

fprintf('a = %28.25f\n',a)

fprintf('b-a = %28.25f\n',c)

fprintf('(b-a)*1e15 = %28.25f\n',d)

Output:

b = 1.1000000000000009769962617

a = 1.1000000000000000888178420

b-a = 0.0000000000000008881784197

(b-a)*1e15 = 0.8881784197001252323389053

We get 0.888178... instead of 1, an 11% error. Watch out! Errors can accumulate.

In double precision arrays, each element is allocated 8 bytes. A 2x5 array is allocated 80 bytes.

(1B) Floating point numbers – Single Precision

In the not-too-distant past, programmers had to worry about not having enough memory for very

large codes and often found it useful to use single precision floating point numbers.

Matlab/Octave allocates half the memory as a double precision number (4 bytes instead of 8

bytes), but this comes at a cost – the range of numbers you can store is smaller and the precision

is worse (8 digits). Nowadays, lack of memory is an issue only if your code is long and does

many computations.

The maximum value that can be stored is ~3.4028e+038

The minimum value that can be stored is ~ 1.1755e-038

You can create single precision variables and arrays with the single() command.

In m-file:

a = 1.1;

fprintf('a = %28.25f\n',a)

b = single(a);

fprintf('b = %28.25f\n',b)

Output:

a = 1.1000000000000000888178420

b = 1.1000000238418579101562500

Error accumulation can become significant much faster.

In single precision arrays, each element is allocated 4 bytes. A 2x5 array is allocated 40 bytes.

(2) Integers

Integers usually are used for counting. When creating integers, you get to decide the amount of

storage space to allocate for the integer and whether it is signed (both positive and negative

values are allowed) or unsigned (only positive values are allowed).

To create a signed integer, use the int*() command, where * can be 8, 16, 32, or 64. These

numbers correspond to the amount of bits of memory you allocate for the integer (8 bits = 1 byte.

Why 8 bits in a byte? Why 12 items in a dozen? Why 3 strikes and you‟re out? It is something

that people decided on somewhat arbitrarily.).

For an unsigned integer that has 8 bits of memory allocated for it,

The maximum value = 255

The minimum value = 0

Here is why… a short lesson in binary.

Binary is a number system that is „base 2‟ meaning each digit can only have the values of 0 and 1

(two numbers). We are used to the decimal number system, or „base 10‟ number system, in

which each digit can have a value from 0 to 9 (ten numbers).

Example: Decimal number system

6304 has four digits in the decimal number system. You can express number as,

6*10
3
 + 3*10

2
 + 0*10

1
 + 4*10

0

binary decimal binary Decimal

0 0 1000 8

1 1 1010 10

10 2 10000 16

11 3 100000 32

100 4 1000000 64

101 5 1111111 127

110 6 10000000 128

111 7 11111111 255

Example: Binary number system

14 has two digits in the decimal number system. What is this number in the binary number

system?

1*2
3
 + 1*2

2
 + 1*2

1
 + 2

0
 = 1110 (This is not one thousand, one hundred, ten)

Kilobyte = 2^10 = 1,024 ~ 10
3
 bytes

Megabyte = 2^20 = 1,048,576 ~ 10
6
 bytes

Gigabyte = 2^30 = 1,073,741,824 ~ 10
9
 bytes

Terabyte = 2^40 = 1,099,511,627,776 ~ 10
12

 bytes

With 8 bits, we can store 256 unique pieces of information; that is, there are 256 unique ways to

arrange the 1s and 0s.

If we want the ability to create negative integers, we can use one of the 8 bits to store the sign

(plus or minus). The other seven bits allow us to store numbers. The minimum and maximum

values for an unsigned integer that has 8 bits of memory allocated for it is -128 and 127 (256

different numbers).

As we increase the number of bits to 16 for an unsigned integer,

0000000000000000 0

0111111111111111 32767

1000000000000001 32768

1111111111111111 65536

Just like with floating point numbers, the more memory we allocate for an integer variable the

higher the number we can store in it.

In integer arrays, each element is allocated N bits, where N is 8, 16, 32, or 64. A 2x5 array is

allocated 10xN bits.

(3A) Character variables

A computer stores all data as 1s and 0s. This is true for character data as well. Although

computers only can understand data as numbers, data associated with character variables are

treated differently than data associated with numerical variables. If data were stored in a

character variable, the 1s and 0s in memory will mean something different than if the data were

stored in a numerical variable (such as a double precision floating-point variable).

All characters (such as 's' or 'A' or '%' or '5') have an integer associated with them. For example,

the character 'A' is associated with 65, while the character '4' is associated with 52. The ASCII

(American Standard Code for Information Interchange) table lists the integer associated with

each character. (http://www.asciitable.com/)

(Note: If someone says they want a document in “ASCII format,” this means is they want “plain”

text with no formatting such as bold, italics, or underscoring. ASCII format allows the user to

easily import the file into his own applications without issues. Notepad creates ASCII text, as

does MSWord when you can save a file as “text only.”)

Characters are allocated 1 byte (8 bits) of memory, just like when integers are created using the

int8() or uint8() commands. We are able to store 256 different characters (notice how the

ASCII table only goes from 0 to 255).

If we stored the number 4 as a signed integer that is allocated 8 bits for data storage in a variable

A,

A = int8(4)

The number 4 would be stored as 00000100. However, if we stored the character 4 in a variable

called B,

A = '4'

The character 4 would be stored as 00110100 (the number 52) since the number 52 is the ASCII

code for the character '4'. We can convert a character to its ASCII code, and vice versa, in the

following manner:

In m-file:

A = int8(4) % The signed integer variable A stores the number 4

B = '4' % The character variable B stores the character '4'

C = double(A) % The double precision floating-point variable C contains the number 4

D = double(B) % The double precision floating-point variable D contains the number

 % associated with the character stored in B.

F = char(105) % The character variable F contains the character associated with the

 % number 105, which is 'i'

After execution:

http://www.asciitable.com/

A = 4

B = 4

C = 4

D = 52

F = i

Look at the amount of memory allocated for each variable using the whos command,

 Attr Name Size Bytes Class

 ==== ==== ==== ==== =====

 A 1x1 1 int8

 B 1x1 1 char

 C 1x1 8 double

 D 1x1 8 double

 F 1x1 1 char

Total is 5 elements using 19 bytes

Strings of characters are stored in arrays. Each character is stored in one element.

In m-file:

mystring = 'hello'

mystring2 = 'world'

superstring = [mystring , mystring2]

disp(superstring(2))

After execution:

mystring = hello

mystring2 = world

superstring = helloworld

e

Look at the amount of memory allocated for each array using the whos command.

Variables in the current scope:

 Attr Name Size Bytes Class

 ==== ==== ==== ===== =====

 mystring 1x5 5 char

 mystring2 1x5 5 char

 superstring 1x10 10 char

(3B) 2D Character Arrays

You can use the char() function to create 2D character arrays.

In m-file:

names = char('Paul' , 'Phillip' , 'Rick' , 'Susan')

a = names(1,5)

After execution:

names =

Paul

Phillip

Rick

Susan

a =

The array names is automatically made into a 4x7 array. The char() function automatically pads

the character array with spaces so that every row has the same number of elements. Blank spaces

will be inserted after names shorter than 7 characters (3 blank spaces after „Paul‟).

(4) Other data types

There are a couple other data types that are useful to know.

Logical:

Logical variables only can have two values, true or false. These true or false states are

represented by the numbers of 1 and 0. We have discussed logical variables earlier in the course.

In m-file:

a = 34

b = 55

c = a > b

d = a < b

f = [23, 45, -12, 97, 65, 9]

g = [65, 44, 32, -10, 34, 0]

h = f > g

After execution:

a = 34

b = 55

c = 0

d = 1

f = 23 45 -12 97 65 9

g = 65 44 32 -10 34 0

h = 0 1 0 1 1 1

The logical function find() returns the array elements contains true (1) values.

In m-file:

f = [23, 45, -12, 97, 65, 9];

g = [65, 44, 32,-10, 34, 0];

find(f > g)

h = f > g

find(h)

After execution:

ans = 2 4 5 6

h = 0 1 0 1 1 1

ans = 2 4 5 6

Complex:

Complex numbers are found in many areas of science including optics, signal processing, control

systems, fluid mechanics, and quantum mechanics. A complex number has a real and imaginary

part.

B + Ci

where B is the real part and C is the imaginary part.

In m-file:

a = 3.0 + 2.0i

b = a^2

After execution:

a = 3 + 2i

b = 5 + 12i

Double precision complex numbers are allocated 8x2 (16) bytes each.

